
www.SecurityXploded.com

http://www.securityxploded.com/

Disclaimer

 The Content, Demonstration, Source Code and Programs presented here is "AS IS"

without any warranty or conditions of any kind. Also the views/ideas/knowledge

expressed here are solely of the trainer’s only and nothing to do with the company or

the organization in which the trainer is currently working.

 However in no circumstances neither the trainer nor SecurityXploded is responsible for

any damage or loss caused due to use or misuse of the information presented here.

www.SecurityXploded.com

Acknowledgement

 Special thanks to null & Garage4Hackers community for their extended support and

cooperation.

 Thanks to all the Trainers who have devoted their precious time and countless hours to

make it happen.

www.SecurityXploded.com

Reversing & Malware Analysis Training

This presentation is part of our Reverse Engineering & Malware Analysis Training

program. Currently it is delivered only during our local meet for FREE of cost.

 For complete details of this course, visit our Security Training page.

www.SecurityXploded.com

http://securityxploded.com/security-training.php

Who am I #1

Amit Malik (sometimes DouBle_Zer0,DZZ)

 Member SecurityXploded

 Security Researcher @ McAfee Labs

 RE, Exploit Analysis/Development, Malware Analysis

 Email: m.amit30@gmail.com

www.SecurityXploded.com

Who am I #2

Swapnil Pathak

 Member SecurityXploded

 Security Researcher @ McAfee Labs

 RE, Malware Analysis, Network Security

 Email: swapnilpathak101@gmail.com

www.SecurityXploded.com

Course Q&A

 Keep yourself up to date with latest security news

 http://www.securityphresh.com

 For Q&A, join our mailing list.

 http://groups.google.com/group/securityxploded

www.SecurityXploded.com

http://www.securityphresh.com/
http://groups.google.com/group/securityxploded

Presentation Outline

 Intro to x86-32

 Assembly Language

 Instructions

 Stack Operations

 Calling conventions

 Demo

www.SecurityXploded.com

x86-32

 32 bit instruction set architectures based on Intel 8086 CPU

 Address a linear address space up to 4GB

 8, 32 bit General Purpose Registers (GPR)

 6,16 bit Segment Registers

 EFLAGS and EIP register

 Control Registers (CR0-CR4) (16 bits)

 Memory Management Registers Descriptor Table Registers (GDTR, IDTR,

LDTR)

 Debug Registers (DR0-DR7)

www.SecurityXploded.com

Registers Usage - RE
 Register

 Storage Locations.

 Much faster access compare to memory locations.

 EAX: Accumulator , mostly stores return values from functions (APIs)

 EBX: Base index (for use with arrays)

 ECX: Counter

 EDX: Data/general

 ESI: Source index for string operations.

www.SecurityXploded.com

Registers Usage – RE Cont.
 EDI: Destination index for string operations.

 ESP: Stack pointer for top address of the stack.

 EBP: Stack base pointer for holding the address of the current stack frame.

 EIP: Instruction pointer. Holds the program counter, the next instruction address.

 Segment registers:

 Used to address particular segments of memory (code, data, stack)

 !) CS: Code !!) SS: Stack

 !!!) ES: Extra !V) DS: Data V) FS, GS

www.SecurityXploded.com

Registers – 32 bit (X86)

www.SecurityXploded.com

(R/E)Flags Register

 Bit field of states

 Status Flags

 Carrry (CF) : set when an arithmetic carry/borrow has been generated out of the

MSB.

 Zero (ZF) : set when an arithmetic operation result is zero and reset otherwise.

 Sign (SF) : set when an arithmetic operation set the MSB i.e. the result value was

negative.

 Trap (TF) : when set permits operation of processor in single-step. Mostly used by

debuggers.

 Interrupt (IF) : determines whether the CPU should handle maskable hardware

interrupts.

 Direction (DF) : determines the direction (left-to-right or right-to-left) of string

processing.

 Overflow (OF) : indicates arithmetic overflow.

www.SecurityXploded.com

Assembly Language
 Low level programming language

 Symbolic representation of machine codes, constants.

 Assembly language program consist of sequence of process instructions and meta

statements

 Assembler translates them to executable instructions that are loaded into memory and

executed.

 Basic Structure

 [label] : opcode operand1, operand2

 opcode – mnemonic that symbolize instructions

 Example.

 MOV AL, 61h => 10110000 01100001

www.SecurityXploded.com

Instructions

ADD dst, src

- Adds the values of src and dst and stores the result into dst.

- For example ADD EAX, 1

SUB dst, src

- Subtracts src value from dst and stores the result in dst.

- For example SUB EAX, 1

CMP dst, src

- Subtracts src value from dst but does store the result in dst

- Mostly used to set/reset decision making bits in EFLAGS register such as ZF

- For example CMP EAX, EBX

www.SecurityXploded.com

Instructions cont.
MOV dst, src

- Moves data from src (left operand) to destination (right operand)

- For example mov EDI, ESI

Note :

- Both operands cannot be memory locations.

- Both the operands must be of the same size

LEA dst, src

- Stands for Load Effective Address.

- Computes the effective address of src operand and stores it in dst operand.

- For example LEA ECX,[EBX + 5]

Note:

- Generally brackets denote value at memory locations.

- In case of LEA it does simple arithmetic and stores it in dst

www.SecurityXploded.com

Instructions cont.

XOR dst, src

- Performs a bitwise exclusive OR operation on the dst and src and stores the

result in dst.

- Each bit of the result is 1 if the corresponding bits of the operands are different,

0 if the corresponding bit are same

Note :

- When used with same register clears the contents of the register

- Optimized way to clear the register. Better than MOV EAX, 0

www.SecurityXploded.com

Instructions cont.
REP

- Used with string operations

- Repeats a string instruction until ECX (counter register) value is equal to zero.

- For example REP MOVS byte ptr DS:[EDI], DS:[ESI]

LOOP

- Similar to loops in high level languages

- Used to execute sequence of instructions multiple times.

- For example

MOV ECX, 10

Test : INC EBX

 INC EAX

 LOOP Test

www.SecurityXploded.com

Instructions cont.

TEST dst, src

- Performs bitwise logical and between dst and src

- Updates the Zero flag bit of the EFLAGS register

- Mostly used to check if the return value of the function is not zero

- For example TEST EAX, EAX

INT 3h

- Breakpoint instruction

- Used by debuggers to stop execution of the program at particular instruction

www.SecurityXploded.com

Instructions cont.

CALL address

- Performs two functions

- Push address of the next instruction on stack (return address)

- Jump to the address specified by the instruction

- For example CALL dword ptr [EAX+4]

RET

- Transfers the control to the address previously pushed on the stack by CALL

instruction

- Mostly denotes the end of the function

www.SecurityXploded.com

Instructions cont.
Jump instructions

- Categorized as conditional and unconditional

- Unconditional jump instructions

- JMP (Far Jump) – E9 – (Cross segments)

- JMP (Short Jump) – EB – (-127 to 128 bytes)

- JMP (Near Jump) – E9 – (in a segment)

- For example JMP EAX

- Conditional jump instructions

- Jumps according to bit flags set in the EFLAGS register

- JC, JNC, JZ, JNZ, JS, JNS, JO, JNO

- Unsigned comparisons JA, JAE, JB, JBE

- Signed comparisons JG, JGE, JL, JLE

- Usually followed by CMP instruction

www.SecurityXploded.com

Instructions cont.

PUSH operand

- Pushes operand on the stack

- Decrements the stack pointer register by operand size

- For example PUSH EAX

POP operand

- Stores the value pointed by the stack pointer in operand

- Increments the stack pointer register by operand size

- For example POP EAX

Note: POP/PUSH EIP is an invalid instruction

PUSHF, POPF

www.SecurityXploded.com

Calling Conventions
 Describes how the arguments are passed and values returned by functions.

 Steps performed when a function is called

 Arguments are passed to the called function

 Program execution is transferred to the address of the called function

 Called function starts with lines of code that prepare stack and registers for use within the function. Also

known as function prologue.

○ For e.g.

 push ebp

 mov ebp, esp

 or with enter instruction

 Called function ends with lines of code that restore stack and registers set initially. Also known as function

epilogue.

○ For e.g.

 mov esp, ebp

 pop ebp

 ret

 or with leave instruction

 Passed arguments are removed from the stack, known as stack cleanup. Can be performed by both calling

function or called function depending on the calling convention used.

www.SecurityXploded.com

Calling conventions cont.
 __cdecl (C calling convention)

 Arguments are passed from right to left and placed on the stack

 Stack cleanup is performed by the caller

 Return values are stored in EAX register

 Standard calling convention used by C compilers

 __stdcall (Standard calling convention)

 Arguments are passed from right to left and placed on the stack

 Stack cleanup is performed by the called function

 Return values are stored in EAX register

 Standard calling convention for Microsoft Win32 API

 __fastcall (Fast calling convention)

 Arguments passed are stored in registers for faster access

 Thiscall

 Arguments are passed from right to left and placed on the stack. this pointer placed in ECX

- Standard calling convention for calling member functions of C++ classes

www.SecurityXploded.com

Stack operations

 Stack is a LIFO (Last In First Out) type data structure

 Stacks grows downward in memory, from higher memory address to lower

memory address

 PUSH decrement the stack pointer i.e ESP

 POP Increment the stack pointer i.e ESP

 Each function has its own stack frame

 Function prologue setup the stack frame for each function

 Local variable of a function are stored into its stack frame

www.SecurityXploded.com

Stack #1

www.SecurityXploded.com

Stack #2

www.SecurityXploded.com

 Each function creates its own stack.

 Caller function stack: known as parent stack.

 Called function stack: known as child stack.

For e.g.

 main(){ ASM Pseudo:

 sum(); _main:

 } 123: push ebp

 124: mov ebp,esp

 125: sub esp,val

 126: call _sum

 127: mov esp,ebp

 128: pop ebp

 129: ret

* The parent and child notation is the instructor notation, technically it should be caller and callee stack frames.

Stack #3

www.SecurityXploded.com

Stack #4

www.SecurityXploded.com

Stack #5

www.SecurityXploded.com

Stack #6

www.SecurityXploded.com

DEMO (Source Code)

 #include <stdio.h>

 /*

 Author: Amit Malik

 http://www.securityxploded.com - Compile in Dev C++

 */

 int mysum(int,int);

 int main()

 {

 int a,b,s;

 a = 5;

 b = 6;

 s = mysum(a,b); // call mysum function

 printf("sum is: %d",s);

 getchar();

 }

 int mysum(int l, int m) // mysum function

 {

 int c;

 c = l + m;

 return c;

 }

www.SecurityXploded.com

http://www.securityxploded.com/

DEMO (Video)

www.SecurityXploded.com

http://vimeo.com/36198403

http://vimeo.com/36198403

x86-64 Intro.

 64 bit instruction set architectures based on Intel 8086 CPU

 Address a linear address space up to 16TB

 16, 64 bit General Purpose Registers (GPR)

 6, 16 bit Segment Registers

 RFLAGS and RIP register

 Control Registers (CR0-CR4) and CR8 (16 bits)

 Memory Management Registers Descriptor Table Registers (GDTR, IDTR,

LDTR) size expanded to 10 bytes

 Debug Registers (DR0-DR7)

 www.SecurityXploded.com

Reference

 Complete Reference Guide for Reversing & Malware Analysis Training

www.SecurityXploded.com

http://securityxploded.com/malware-analysis-training-reference.php
http://technet.microsoft.com/en-us/library/cc768129.aspx

Thank You !

www.SecurityXploded.com

http://www.securityxploded.com/

